Serveur d'exploration cluster fer-soufre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The FeoC [4Fe-4S] Cluster Is Redox-Active and Rapidly Oxygen-Sensitive.

Identifieur interne : 000199 ( Main/Exploration ); précédent : 000198; suivant : 000200

The FeoC [4Fe-4S] Cluster Is Redox-Active and Rapidly Oxygen-Sensitive.

Auteurs : Aaron T. Smith [États-Unis] ; Richard O. Linkous [États-Unis] ; Nathan J. Max [États-Unis] ; Alexandrea E. Sestok [États-Unis] ; Veronika A. Szalai [États-Unis] ; Kelly N. Chac N [États-Unis]

Source :

RBID : pubmed:31713418

Descripteurs français

English descriptors

Abstract

The acquisition of iron is essential to establishing virulence among most pathogens. Under acidic and/or anaerobic conditions, most bacteria utilize the widely distributed ferrous iron (Fe2+) uptake (Feo) system to import metabolically-required iron. The Feo system is inadequately understood at the atomic, molecular, and mechanistic levels, but we do know it is composed of a main membrane component (FeoB) essential for iron translocation, as well as two small, cytosolic proteins (FeoA and FeoC) hypothesized to function as accessories to this process. FeoC has many hypothetical functions, including that of an iron-responsive transcriptional regulator. Here, we demonstrate for the first time that Escherichia coli FeoC (EcFeoC) binds an [Fe-S] cluster. Using electronic absorption, X-ray absorption, and electron paramagnetic resonance spectroscopies, we extensively characterize the nature of this cluster. Under strictly anaerobic conditions after chemical reconstitution, we demonstrate that EcFeoC binds a redox-active [4Fe-4S]2+/+ cluster that is rapidly oxygen-sensitive and decays to a [2Fe-2S]2+ cluster (t1/2 ≈ 20 s), similar to the [Fe-S] cluster in the fumarate and nitrate reductase (FNR) transcriptional regulator. We further show that this behavior is nearly identical to the homologous K. pneumoniae FeoC, suggesting a redox-active, oxygen-sensitive [4Fe-4S]2+ cofactor is a general phenomenon of cluster-binding FeoCs. Finally, in contrast to FNR, we show that the [4Fe-4S]2+ cluster binding to FeoC is associated with modest conformational changes of the polypeptide, but not protein dimerization. We thus posit a working hypothesis in which the cluster-binding FeoCs may function as oxygen-sensitive iron sensors that fine-tune pathogenic ferrous iron acquisition.

DOI: 10.1021/acs.biochem.9b00745
PubMed: 31713418
PubMed Central: PMC6904521


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The FeoC [4Fe-4S] Cluster Is Redox-Active and Rapidly Oxygen-Sensitive.</title>
<author>
<name sortKey="Smith, Aaron T" sort="Smith, Aaron T" uniqKey="Smith A" first="Aaron T" last="Smith">Aaron T. Smith</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , Baltimore , Maryland 21250 United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , Baltimore </wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Linkous, Richard O" sort="Linkous, Richard O" uniqKey="Linkous R" first="Richard O" last="Linkous">Richard O. Linkous</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , Baltimore , Maryland 21250 United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , Baltimore </wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Max, Nathan J" sort="Max, Nathan J" uniqKey="Max N" first="Nathan J" last="Max">Nathan J. Max</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , Baltimore , Maryland 21250 United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , Baltimore </wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Sestok, Alexandrea E" sort="Sestok, Alexandrea E" uniqKey="Sestok A" first="Alexandrea E" last="Sestok">Alexandrea E. Sestok</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , Baltimore , Maryland 21250 United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , Baltimore </wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Szalai, Veronika A" sort="Szalai, Veronika A" uniqKey="Szalai V" first="Veronika A" last="Szalai">Veronika A. Szalai</name>
<affiliation wicri:level="1">
<nlm:affiliation>Physical Measurement Laboratory , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Physical Measurement Laboratory , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 </wicri:regionArea>
<wicri:noRegion>Maryland 20899 </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chac N, Kelly N" sort="Chac N, Kelly N" uniqKey="Chac N K" first="Kelly N" last="Chac N">Kelly N. Chac N</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry , Reed College , Portland , Oregon 97202 , United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry , Reed College , Portland , Oregon 97202 </wicri:regionArea>
<wicri:noRegion>Oregon 97202 </wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31713418</idno>
<idno type="pmid">31713418</idno>
<idno type="doi">10.1021/acs.biochem.9b00745</idno>
<idno type="pmc">PMC6904521</idno>
<idno type="wicri:Area/Main/Corpus">000200</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000200</idno>
<idno type="wicri:Area/Main/Curation">000200</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000200</idno>
<idno type="wicri:Area/Main/Exploration">000200</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The FeoC [4Fe-4S] Cluster Is Redox-Active and Rapidly Oxygen-Sensitive.</title>
<author>
<name sortKey="Smith, Aaron T" sort="Smith, Aaron T" uniqKey="Smith A" first="Aaron T" last="Smith">Aaron T. Smith</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , Baltimore , Maryland 21250 United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , Baltimore </wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Linkous, Richard O" sort="Linkous, Richard O" uniqKey="Linkous R" first="Richard O" last="Linkous">Richard O. Linkous</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , Baltimore , Maryland 21250 United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , Baltimore </wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Max, Nathan J" sort="Max, Nathan J" uniqKey="Max N" first="Nathan J" last="Max">Nathan J. Max</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , Baltimore , Maryland 21250 United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , Baltimore </wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Sestok, Alexandrea E" sort="Sestok, Alexandrea E" uniqKey="Sestok A" first="Alexandrea E" last="Sestok">Alexandrea E. Sestok</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , Baltimore , Maryland 21250 United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , Baltimore </wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Szalai, Veronika A" sort="Szalai, Veronika A" uniqKey="Szalai V" first="Veronika A" last="Szalai">Veronika A. Szalai</name>
<affiliation wicri:level="1">
<nlm:affiliation>Physical Measurement Laboratory , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Physical Measurement Laboratory , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 </wicri:regionArea>
<wicri:noRegion>Maryland 20899 </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chac N, Kelly N" sort="Chac N, Kelly N" uniqKey="Chac N K" first="Kelly N" last="Chac N">Kelly N. Chac N</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry , Reed College , Portland , Oregon 97202 , United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry , Reed College , Portland , Oregon 97202 </wicri:regionArea>
<wicri:noRegion>Oregon 97202 </wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biochemistry</title>
<idno type="eISSN">1520-4995</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Catalytic Domain (MeSH)</term>
<term>Electron Spin Resonance Spectroscopy (MeSH)</term>
<term>Escherichia coli (chemistry)</term>
<term>Escherichia coli (genetics)</term>
<term>Escherichia coli (metabolism)</term>
<term>Escherichia coli Proteins (chemistry)</term>
<term>Escherichia coli Proteins (genetics)</term>
<term>Escherichia coli Proteins (metabolism)</term>
<term>Iron (chemistry)</term>
<term>Iron (metabolism)</term>
<term>Iron-Binding Proteins (chemistry)</term>
<term>Iron-Binding Proteins (genetics)</term>
<term>Iron-Binding Proteins (metabolism)</term>
<term>Iron-Sulfur Proteins (chemistry)</term>
<term>Iron-Sulfur Proteins (genetics)</term>
<term>Iron-Sulfur Proteins (metabolism)</term>
<term>Kinetics (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxygen (chemistry)</term>
<term>Oxygen (metabolism)</term>
<term>Repressor Proteins (chemistry)</term>
<term>Repressor Proteins (genetics)</term>
<term>Repressor Proteins (metabolism)</term>
<term>Sulfur (chemistry)</term>
<term>Sulfur (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cinétique (MeSH)</term>
<term>Domaine catalytique (MeSH)</term>
<term>Escherichia coli (composition chimique)</term>
<term>Escherichia coli (génétique)</term>
<term>Escherichia coli (métabolisme)</term>
<term>Fer (composition chimique)</term>
<term>Fer (métabolisme)</term>
<term>Ferrosulfoprotéines (composition chimique)</term>
<term>Ferrosulfoprotéines (génétique)</term>
<term>Ferrosulfoprotéines (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Oxygène (composition chimique)</term>
<term>Oxygène (métabolisme)</term>
<term>Protéines Escherichia coli (composition chimique)</term>
<term>Protéines Escherichia coli (génétique)</term>
<term>Protéines Escherichia coli (métabolisme)</term>
<term>Protéines de liaison au fer (composition chimique)</term>
<term>Protéines de liaison au fer (génétique)</term>
<term>Protéines de liaison au fer (métabolisme)</term>
<term>Protéines de répression (composition chimique)</term>
<term>Protéines de répression (génétique)</term>
<term>Protéines de répression (métabolisme)</term>
<term>Soufre (composition chimique)</term>
<term>Soufre (métabolisme)</term>
<term>Spectroscopie de résonance de spin électronique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Escherichia coli Proteins</term>
<term>Iron</term>
<term>Iron-Binding Proteins</term>
<term>Iron-Sulfur Proteins</term>
<term>Oxygen</term>
<term>Repressor Proteins</term>
<term>Sulfur</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Escherichia coli</term>
<term>Fer</term>
<term>Ferrosulfoprotéines</term>
<term>Oxygène</term>
<term>Protéines Escherichia coli</term>
<term>Protéines de liaison au fer</term>
<term>Protéines de répression</term>
<term>Soufre</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Escherichia coli</term>
<term>Escherichia coli Proteins</term>
<term>Iron-Binding Proteins</term>
<term>Iron-Sulfur Proteins</term>
<term>Repressor Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Escherichia coli</term>
<term>Ferrosulfoprotéines</term>
<term>Protéines Escherichia coli</term>
<term>Protéines de liaison au fer</term>
<term>Protéines de répression</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Escherichia coli</term>
<term>Escherichia coli Proteins</term>
<term>Iron</term>
<term>Iron-Binding Proteins</term>
<term>Iron-Sulfur Proteins</term>
<term>Oxygen</term>
<term>Repressor Proteins</term>
<term>Sulfur</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Escherichia coli</term>
<term>Fer</term>
<term>Ferrosulfoprotéines</term>
<term>Oxygène</term>
<term>Protéines Escherichia coli</term>
<term>Protéines de liaison au fer</term>
<term>Protéines de répression</term>
<term>Soufre</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Catalytic Domain</term>
<term>Electron Spin Resonance Spectroscopy</term>
<term>Kinetics</term>
<term>Oxidation-Reduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cinétique</term>
<term>Domaine catalytique</term>
<term>Oxydoréduction</term>
<term>Spectroscopie de résonance de spin électronique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The acquisition of iron is essential to establishing virulence among most pathogens. Under acidic and/or anaerobic conditions, most bacteria utilize the widely distributed ferrous iron (Fe
<sup>2+</sup>
) uptake (Feo) system to import metabolically-required iron. The Feo system is inadequately understood at the atomic, molecular, and mechanistic levels, but we do know it is composed of a main membrane component (FeoB) essential for iron translocation, as well as two small, cytosolic proteins (FeoA and FeoC) hypothesized to function as accessories to this process. FeoC has many hypothetical functions, including that of an iron-responsive transcriptional regulator. Here, we demonstrate for the first time that
<i>Escherichia coli</i>
FeoC (
<i>Ec</i>
FeoC) binds an [Fe-S] cluster. Using electronic absorption, X-ray absorption, and electron paramagnetic resonance spectroscopies, we extensively characterize the nature of this cluster. Under strictly anaerobic conditions after chemical reconstitution, we demonstrate that
<i>Ec</i>
FeoC binds a redox-active [4Fe-4S]
<sup>2+/+</sup>
cluster that is rapidly oxygen-sensitive and decays to a [2Fe-2S]
<sup>2+</sup>
cluster (
<i>t</i>
<sub>1/2</sub>
≈ 20 s), similar to the [Fe-S] cluster in the fumarate and nitrate reductase (FNR) transcriptional regulator. We further show that this behavior is nearly identical to the homologous
<i>K. pneumoniae</i>
FeoC, suggesting a redox-active, oxygen-sensitive [4Fe-4S]
<sup>2+</sup>
cofactor is a general phenomenon of cluster-binding FeoCs. Finally, in contrast to FNR, we show that the [4Fe-4S]
<sup>2+</sup>
cluster binding to FeoC is associated with modest conformational changes of the polypeptide, but not protein dimerization. We thus posit a working hypothesis in which the cluster-binding FeoCs may function as oxygen-sensitive iron sensors that fine-tune pathogenic ferrous iron acquisition.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31713418</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>06</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1520-4995</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>58</Volume>
<Issue>49</Issue>
<PubDate>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</PubDate>
</JournalIssue>
<Title>Biochemistry</Title>
<ISOAbbreviation>Biochemistry</ISOAbbreviation>
</Journal>
<ArticleTitle>The FeoC [4Fe-4S] Cluster Is Redox-Active and Rapidly Oxygen-Sensitive.</ArticleTitle>
<Pagination>
<MedlinePgn>4935-4949</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/acs.biochem.9b00745</ELocationID>
<Abstract>
<AbstractText>The acquisition of iron is essential to establishing virulence among most pathogens. Under acidic and/or anaerobic conditions, most bacteria utilize the widely distributed ferrous iron (Fe
<sup>2+</sup>
) uptake (Feo) system to import metabolically-required iron. The Feo system is inadequately understood at the atomic, molecular, and mechanistic levels, but we do know it is composed of a main membrane component (FeoB) essential for iron translocation, as well as two small, cytosolic proteins (FeoA and FeoC) hypothesized to function as accessories to this process. FeoC has many hypothetical functions, including that of an iron-responsive transcriptional regulator. Here, we demonstrate for the first time that
<i>Escherichia coli</i>
FeoC (
<i>Ec</i>
FeoC) binds an [Fe-S] cluster. Using electronic absorption, X-ray absorption, and electron paramagnetic resonance spectroscopies, we extensively characterize the nature of this cluster. Under strictly anaerobic conditions after chemical reconstitution, we demonstrate that
<i>Ec</i>
FeoC binds a redox-active [4Fe-4S]
<sup>2+/+</sup>
cluster that is rapidly oxygen-sensitive and decays to a [2Fe-2S]
<sup>2+</sup>
cluster (
<i>t</i>
<sub>1/2</sub>
≈ 20 s), similar to the [Fe-S] cluster in the fumarate and nitrate reductase (FNR) transcriptional regulator. We further show that this behavior is nearly identical to the homologous
<i>K. pneumoniae</i>
FeoC, suggesting a redox-active, oxygen-sensitive [4Fe-4S]
<sup>2+</sup>
cofactor is a general phenomenon of cluster-binding FeoCs. Finally, in contrast to FNR, we show that the [4Fe-4S]
<sup>2+</sup>
cluster binding to FeoC is associated with modest conformational changes of the polypeptide, but not protein dimerization. We thus posit a working hypothesis in which the cluster-binding FeoCs may function as oxygen-sensitive iron sensors that fine-tune pathogenic ferrous iron acquisition.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Smith</LastName>
<ForeName>Aaron T</ForeName>
<Initials>AT</Initials>
<Identifier Source="ORCID">0000-0002-9332-8683</Identifier>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , Baltimore , Maryland 21250 United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Linkous</LastName>
<ForeName>Richard O</ForeName>
<Initials>RO</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , Baltimore , Maryland 21250 United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Max</LastName>
<ForeName>Nathan J</ForeName>
<Initials>NJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , Baltimore , Maryland 21250 United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sestok</LastName>
<ForeName>Alexandrea E</ForeName>
<Initials>AE</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , Baltimore , Maryland 21250 United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Szalai</LastName>
<ForeName>Veronika A</ForeName>
<Initials>VA</Initials>
<AffiliationInfo>
<Affiliation>Physical Measurement Laboratory , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chacón</LastName>
<ForeName>Kelly N</ForeName>
<Initials>KN</Initials>
<Identifier Source="ORCID">0000-0003-1332-7283</Identifier>
<AffiliationInfo>
<Affiliation>Department of Chemistry , Reed College , Portland , Oregon 97202 , United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R35 GM133497</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 GM066706</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P41 GM103393</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>11</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biochemistry</MedlineTA>
<NlmUniqueID>0370623</NlmUniqueID>
<ISSNLinking>0006-2960</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029968">Escherichia coli Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C000707998">FeoC protein, E coli</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D033862">Iron-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007506">Iron-Sulfur Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012097">Repressor Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>70FD1KFU70</RegistryNumber>
<NameOfSubstance UI="D013455">Sulfur</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>S88TT14065</RegistryNumber>
<NameOfSubstance UI="D010100">Oxygen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020134" MajorTopicYN="N">Catalytic Domain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004578" MajorTopicYN="N">Electron Spin Resonance Spectroscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029968" MajorTopicYN="N">Escherichia coli Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D033862" MajorTopicYN="N">Iron-Binding Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007506" MajorTopicYN="N">Iron-Sulfur Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010100" MajorTopicYN="N">Oxygen</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012097" MajorTopicYN="N">Repressor Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013455" MajorTopicYN="N">Sulfur</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>11</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>11</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31713418</ArticleId>
<ArticleId IdType="doi">10.1021/acs.biochem.9b00745</ArticleId>
<ArticleId IdType="pmc">PMC6904521</ArticleId>
<ArticleId IdType="mid">NIHMS1061320</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Inorg Chem. 2005 Jun;10(4):417-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15889286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2006 Oct;74(10):5433-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16988218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiologyopen. 2016 Jun;5(3):453-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26918301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2013 Aug;195(15):3364-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23708131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2008 Apr;7(4):288-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18396134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2017 Sep 13;139(36):12784-12792</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28817778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2012 Jul 13;423(4):733-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22705302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 1996 Nov;64(11):4549-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8890205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2013 Nov;195(21):4826-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23955009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 1996 Jul 1;3(Pt 4):185-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16702677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2013 Oct;195(20):4726-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23955005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2004 Aug 15;331(2):370-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15265744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1981 Jan;256(2):731-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7451471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1987 Sep 15;262(26):12647-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3305511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2000 Jul;37(2):274-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10931324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1999 Jan 27;1410(1):51-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10076014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2013 Aug 20;4(4):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23963183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2013 Aug;81(8):2828-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23716605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2014 Oct 1;463(1):83-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25019503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2016 May;162(5):889-897</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26887897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2007 Sep;71(3):413-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17804665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Prod Rep. 2007 Jun;24(3):511-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17534527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2016 Jul 22;291(30):15653-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27288412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 2018 Feb;142:1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28941825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Nov 22;113(47):13462-13467</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27821741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes (Basel). 2016 Dec 14;7(12):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27983658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2015 Sep 16;137(36):11695-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26284355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Cell Infect Microbiol. 2013 Nov 14;3:75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24294593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2001 Jul 27;40(28):8343-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11444981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2016 Feb 01;198(7):1160-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26833408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2016 Mar;40(2):273-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26684538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2014 Mar;19(3):465-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24532333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metallomics. 2018 Jul 18;10(7):887-898</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29953152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 1993 Mar 15;108(1):111-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8472918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 2012 Jun;53(2):161-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22580893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1996 Jun 15;316 ( Pt 3):887-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8670167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Pathog. 2011 Sep;51(3):121-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21575704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2004 Dec;186(23):8018-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15547274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2015 Jan 1;197(1):92-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25313398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2003 Jun;27(2-3):215-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12829269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1985 Mar;145(2):406-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4014672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1971 Oct 10;246(19):5877-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4330058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2004;58:611-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15487950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2005;74:247-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15952888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acc Chem Res. 2014 Oct 21;47(10):3196-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25262769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):11076-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16043697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2017 Aug 4;292(31):12727-12734</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28615456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2014 Jun 1;454:36-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24632099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1993 Oct;175(19):6212-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8407793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 May 30;417(6888):552-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12037568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometals. 2006 Apr;19(2):143-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16718600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 29;280(30):28095-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15901729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2006 Feb;59(4):1073-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16430685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Dec 29;48(51):12252-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19954209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2012 Dec;194(23):6518-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23024345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2016 Jul 21;84(8):2324-2335</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27271740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometals. 2007 Jun;20(3-4):699-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17206386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2009 Feb;191(3):1044-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19028886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Mar 4;280(9):8309-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15615709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2003 Apr;71(4):1919-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12654809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Cell Infect Microbiol. 2017 Jul 21;7:331</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28785546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 Feb;1827(2):161-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23044392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Mar 5;279(10):9278-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14645253</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="Smith, Aaron T" sort="Smith, Aaron T" uniqKey="Smith A" first="Aaron T" last="Smith">Aaron T. Smith</name>
</region>
<name sortKey="Chac N, Kelly N" sort="Chac N, Kelly N" uniqKey="Chac N K" first="Kelly N" last="Chac N">Kelly N. Chac N</name>
<name sortKey="Linkous, Richard O" sort="Linkous, Richard O" uniqKey="Linkous R" first="Richard O" last="Linkous">Richard O. Linkous</name>
<name sortKey="Max, Nathan J" sort="Max, Nathan J" uniqKey="Max N" first="Nathan J" last="Max">Nathan J. Max</name>
<name sortKey="Sestok, Alexandrea E" sort="Sestok, Alexandrea E" uniqKey="Sestok A" first="Alexandrea E" last="Sestok">Alexandrea E. Sestok</name>
<name sortKey="Szalai, Veronika A" sort="Szalai, Veronika A" uniqKey="Szalai V" first="Veronika A" last="Szalai">Veronika A. Szalai</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/IronSulferCluV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000199 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000199 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    IronSulferCluV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31713418
   |texte=   The FeoC [4Fe-4S] Cluster Is Redox-Active and Rapidly Oxygen-Sensitive.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31713418" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IronSulferCluV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:13:39 2020. Site generation: Sat Nov 21 15:14:05 2020